organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Li Zhang* and Zong-Xiao Li

Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail: baojizhangxinli@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.009 Å R factor = 0.092 wR factor = 0.196 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,*N*'-Bis(5-chloro-2-hydroxybenzylidene)ethane-1,2-diamine

The title compound, $C_{16}H_{14}Cl_2N_2O_2$, is a Schiff base compound, derived from the condensation of 5-chlorosalicylaldehyde and ethane-1,2-diamine in MeOH. The molecule lies about an inversion centre at the mid-point of the C-C bond of the ethylenediamine unit. Intramolecular O-H…N hydrogen bonds contribute to the planarity of the aromatic imide units of the molecule.

Comment

As an extension of our work on the structural characterization of Schiff base compounds (Li & Zhang, 2004*a*,*b*, 2005; Zhang & Li, 2005), the crystal structure of the title compound, (I), is reported here.

Compound (I) is a Schiff base compound with crystallographically imposed inversion symmetry (Fig. 1). All the bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987) and are comparable to those observed in a similar Schiff base compound (Kennedy & Reglinski, 2001). The two symmetry-related benzene rings are strictly parallel and the planarity of the C1–C6/C7/N1/C8 segments of the molecule [r.m.s. deviation = 0.017 (6) Å] is supported by intramolecular $O-H\cdots N$ hydrogen bonds (Table 1). The C7=N1 bond length [1.271 (7) Å] confirms it to be a double bond. As expected, the molecule adopts *trans* configurations about the C=N bonds.

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg) and ethane-1,2-diamine (0.2 mmol, 12.1 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for about 30 min to give a clear yellow solution. After leaving the solution to stand in air for 12 d, yellow plate-like crystals formed.

Crystal data $C_{16}H_{14}Cl_2N_2O_2$ $M_r = 337.19$ Monoclinic, $P2_1/c$ a = 17.790 (3) Å b = 7.253 (6) Å c = 6.137 (5) Å $\beta = 92.653$ (7)° V = 791.0 (9) Å³

Z = 2 $D_x = 1.416 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.42 \text{ mm}^{-1}$ T = 298 (2) K Plate, yellow $0.34 \times 0.13 \times 0.06 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved Received 15 August 2006 Accepted 16 August 2006 Data collection

Bruker SMART CCD area detector diffractometer (i) scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.871, T_{\max} = 0.975$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.092$ wR(F²) = 0.196 S=1.071394 reflections 101 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots N1$	0.82	1.92	2.639 (7)	146

3620 measured reflections

 $R_{\rm int}=0.110$

 $\theta_{\rm max} = 25.5^{\circ}$

1394 independent reflections

688 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + 2.3249P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C-H = 0.93-0.97 Å, O-H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. The crystals were very weakly diffracting so that the ratio of observed to unique reflections is low (49%), and the value of R_{int} is 0.11.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabelled atoms are at the symmetry positions (1 - x, 1 - y, 1 - z). Intramolecular O-H···N hydrogen bonds are shown as dashed lines.

The authors thank Baoji University of Arts and Sciences for research grant No. 02js40.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kennedy, A. R. & Reglinski, J. (2001). Acta Cryst. E57, o1027-o1028.
- Li, Z.-X. & Zhang, X.-L. (2004a). Acta Cryst. E60, m958-m959.
- Li, Z.-X. & Zhang, X.-L. (2004b). Acta Cryst. E60, 02199-02200.
- Li, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, 0875-0876.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97, University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Zhang, X.-L. & Li, Z.-X. (2005). Acta Cryst. E61, o266-o268.